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Abstract

The linear spline regression problem is to determine a piecewise linear function for estimating a set of
given points while minimizing a given measure of misfit or error. This is a classical problem in compu-
tational statistics and operations research; dynamic programming was proposed as a solution technique
more than forty years ago by Bellman and Roth (1969). The algorithm requires a discretization of the solu-
tion space to define a grid of candidate breakpoints. This paper proposes an adaptive refinement scheme
for the grid of candidate breakpoints in order to allow the dynamic programming method to scale for
larger instances of the problem. We evaluate the quality of solutions found on small instances compared
with optimal solutions determined by a novel integer programming formulation of the problem. We also
consider a generalization of the linear spline regression problem to fit multiple curves that share break-
point horizontal coordinates, and we extend our method to solve the generalized problem. Computational
experiments verify that our nonuniform grid construction schemes are useful for computing high-quality
solutions for both the single-curve and two-curve linear spline regression problem.

Keywords: Piecewise regression, least squares, change point detection, dynamic programming, mixed
integer programming.

1 Problem Description and Survey of Literature
The linear spline regression problem, given a dataset D = (x y) ∈ Rn×2, is to determine a continuous piecewise linear function with
m line segments that best fits the data as measured by a given error function e : D → R. The data consists of an independent variable
vector x ∈ Rn and a dependent variable vector y ∈ Rn; without losing generality it is assumed that x1 ≤ · · · ≤ xn. Continuity implies
that every pair of incident line segments must intersect at a breakpoint. Also, note that the methods herein generalize for the case that
x is a matrix but there is a single ordered dimension (e.g., time) in which the function is piecewise linear with multiple pieces and
otherwise the function is linear.

The estimated function has a set of m + 1 breakpoints denoted by b = [bij ] ∈ R(m+1)×2. The breakpoints must be determined
within a domain of interest I ⊂ R; typically I = [x1, xn] or I = [0, xn]. The error over the line segments for given dataD is measured
by one of the following:

Absolute error: e1(D, b) =

m∑
j=1

∑
i=1,...,n:

bj1≤xi≤bj+1,1

∣∣∣∣yi − ( bj+1,2 − bj,2
bj+1,1 − bj1

(xi − bj1) + bj1

)∣∣∣∣. (1)

Sum of squared error: e2(D, b) =

m∑
j=1

∑
i=1,...,n:

bj1≤xi≤bj+1,1

[
yi −

(
bj+1,2 − bj2
bj+1,1 − bj1

(xi − bj1) + bj1

)]2
. (2)

Maximum of absolute errors: e∞(D, b) =
m∑
j=1

max
i=1,...,n:

bj1≤xi≤bj+1,1

∣∣∣∣yi − ( bj+1,2 − bj2
bj+1,1 − bj1

(xi − bj1) + bj1

)∣∣∣∣. (3)
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Bellman and Roth [3] proposed a dynamic programming algorithm for minimizing (3) over a given (uniform) grid of candidate
breakpoints. Guthery [6] proposed an efficient dynamic program to fit a segmented curve that is not required to be a continuous
function in order to minimize (2). Ertel and Flowlkes [4] developed heuristics to solve both problems. More recently, in the econo-
metrics community, Bai and Perron [2] revisited the problem considered by Guthery. Also, Aronov et al. [1] suggest an approximation
algorithm for the problem considered herein and similar to that of [3] with a runtime complexity that is a high degree polynomial in
the number of data points; hence it may not be efficient in practice. The problem’s computational complexity remains an open prob-
lem according to [1]. In recent work, Toridello and Viemla [8] proposed integer programming formulations for a related curve-fitting
problem.

In the following section we propose an integer programming formulation for the linear spline regression problem. In Section 3
we give an overview of the dynamic programming method. In Section 4 we consider two approaches to constructing tractable grids
of candidate breakpoints for applying the dynamic program: the first is a static scheme, and the second is a dynamic scheme that
adaptively refines the grid based on a current solution. We conclude with numerical experiments in Section 6.

2 A Mixed Integer Programming Formulation
In this section, we consider a mixed-integer programming (MIP) formulation for the problem. The following tables define the variables
and constants of the formulation.

Variable Meaning
βj The slope of the j-th line segment, i.e., βj =

bj2−bj−1,2

bj1−bj−1,1
.

αj The intercept of the j-th line segment, i.e., αj = bj−1,2 +βj(bj1− bj−1,1).
φij Indicating whether the error of the i-th data point should

should contribute to the error of the jth line segment, i.e.,

φij =

{
0 if bj−1,1 ≤ xi ≤ bj1
1 otherwise

ξi ξi = |yi − (βjxi + αj)|, the difference between y value of the ith data
point and the estimated y value of the line segment.

Constant Meaning
M1,M2,M3 Large (“big-M”) constants – to satisfy the associated inequali-

ties for i = 1, . . . , n. For example, it suffices to set M1 ≥
maxi,j,k=1,...,n

i 6=j

∣∣∣yk − yj − yi−yj

xi−xj
(xk − xj)

∣∣∣.
We first consider a nonconvex nonlinear formulation for the general problem:

minimize
β,φ,ξ,b

n∑
i=1

ξ2i (4a)

subject to |yi − bj2 − βjxi| ≤ ξi +M1φij i = 1, . . . , n, j = 1, . . . ,m (4b)
m∑
j=1

φij = m− 1 i = 1, . . . , n (4c)

−M2φij ≤ bj1 − xi i = 1, . . . , n, j = 1, . . . ,m (4d)

−M2φij ≤ xi − bj−1,1 i = 1, . . . , n, j = 2, . . . ,m (4e)

bj1 =
bj+1,2 − bj2
βj − βj+1

j = 1, . . . ,m− 1 (4f)

φij ∈ {0, 1} i = 1, . . . , n, j = 1, . . . ,m. (4g)

Here we minimize the error loss function e2(D, ·). Note that by replacing the objective function with other loss functions such as (1)
or (3), we can instead consider, respectively, the minimization of the sum of absolute errors, or the minimization of the maximum of
absolute errors. The constraints (4b) imply that for i = 1, . . . , n, ξi measures the deviation of yi and αj + βjxi for the segment j to
which data point i is assigned; in other words, if φij = 0, then the constraints (4b) require that ξi = |yi − (βjxi + αj)|. Otherwise,
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(t4, s41)(t1, s11) (t2, s21) (t3, s31)
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Figure 1: Example of a uniform grid Ω =
⋃4

i=1

⋃4
j=1{(ti, sij)}.

the constraints are automatically satisfied by using the sufficiently large constant M1. The constraints (4d)-(4e) force each data point
to be assigned to exactly one of the m line segments and its error to be respectively evaluated by using that line segment.

Assuming that the fitted curve is either concave or convex, we can rewrite (4) as a convex mixed integer quadratic program
(MIQP). The MIQP formulation is obtained from (4) by substituting the bj1 variables in (4d) and (4e) and replacing M2 by a constant
M3 satisfying M3 > (βj − βj+1)M2 for j = 1, . . . ,m; if the function to be estimated is Lipschitz with constant L, then we may let

M3 = L ·M2 ≥ max
j=1,...,m

βjM2 ≥ max
j=1,...,m

{βj − βj+1}M2.

The resulting formulation is as follows:

minimize
α,β,φ,ξ

n∑
i=1

ξ2i (5a)

subject to |yi − (βjxi + αj)| ≤ ξi +M1φij for i = 1, . . . , n, j = 1, . . . ,m (5b)
m∑
j=1

φij = m− 1 for i = 1, . . . , n (5c)

−M3φij ≤ αj − αj+1 − (βj+1 − βj)xi for i = 1, . . . , n, j = 1, . . . ,m− 1 (5d)

−M3φij ≤ αj − αj−1 + (βj − βj−1)xi for i = 1, . . . , n, j = 2, . . . ,m (5e)

βj+1 ≤ βj for j = 1, . . . ,m− 1 (5f)

φij ∈ {0, 1} for i = 1, . . . , n, j = 1, . . . ,m. (5g)

The constraints (5d)-(5e) follow from (4d)-(4e) given that βj ≥ βj+1 for j = 1, . . . ,m (when the function to be estimated is a
concave piecewise linear function). Note that if instead of (5f) we required that βj ≤ βj+1 for all j and replaced the inequalities
in (5d)-(5e) with the reverse inequalities, then (5) could be used to estimate a convex piecewise linear function. The constraint (5f)
ensures that the resulting continuous piecewise linear function is concave.

Note that an MIQP formulation for a related problem has been proposed by Toriello and Viemla [8]. A key difference between
their formulation and (5) is that it does not require the estimated curve to correspond to a function over the domain defined by the
data points; in other words, in [8] the error is computed as a function of the vertical distances from the data points to the closest line
segments, whereas in our case a set of points between adjacent breakpoints must always be assigned to the same line segment. We
use formulation (5) as a benchmark for numerical results in Section 6.

Next we review the dynamic programming method for solving this problem.

3 Dynamic Programming for Linear Spline Regression
Bellman and Roth [3] proposed dynamic programming (DP) for determining a continuous piecewise linear function that minimizes
the error function e∞(·). The Bellman optimality equations of the DP are expressed for a given grid system consisting of a finite
number of candidate breakpoints over which the error is minimized [3]. Figure 1 shows an example of the uniform grid system
considered in [3] along with a piecewise linear solution curve with three line segments.

We now write the Bellman equations of the linear spline regression problem DP [3]. First, let Ω ∈ R2 denote a finite set of candidate
breakpoints. For a positive integer p let t ∈ Rp denote the vector of breakpoint x-coordinates of a grid Ω, with t1 < · · · < tp. Define
S : R → 2n, where S(x̄) is the set of indexes that share the same x-coordinate value x̄. For example, in Figure 1, S(t1) = {1, 2, 3, 4}.
For convenience we also write the breakpoints as Ω =

⋃p
i=1 {(ti, sij) | j ∈ S(ti)} ∈ R2; we assume that si1 < · · · < si|S(ti)| for

i = 1, . . . , p.
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For k, l ∈ {1, . . . , p}with tk < ti, l ∈ S(tk) and j ∈ S(ti), we denote the error of segment (tk, skl), (ti, sij) by E(tk, skl, ti, sij);
for the squared error function e2(·) it is given by

E(tk, skl, ti, sij) =
∑

r=1,...,n:
tk≤xr≤ti

{
yr −

(
sij − skl
ti − tk

(xr − tk) + skl

)}2

.

Let Fm̂(i, j) denote the optimal error of m̂ line segments when the right breakpoint of the last segment is (ti, sij). Then, letting
m̂ ∈ {2, . . . ,m}, the optimality equations of the DP are given by:

Fm̂(i, j) = min
k=m̂,...,i−1,l∈S(tk)

{E(tk, skl, ti, sij) + Fm̂−1(k, l)} for i = m̂+ 1, . . . , p−m+ m̂, j ∈ S(ti). (6a)

F1(i, j) = min
l∈S(t1)

E(t1, s1l, ti, sij) for i = 2, . . . , p−m+ 1, j ∈ S(ti). (6b)

The method requires the evaluation of F1(·), . . . , Fm(·) to determine an optimal continuous piecewise linear function withm line
segments given Ω. To obtain the optimal solution value using (6), we solve for

min
j∈Stp

Fm(p, j). (7)

To determine the optimal solution, we must also store the breakpoints (tk, sk`) at which the minimum of Fm̂(ti, sij) is attained for
m̂ = 1, . . . ,m, for each i ∈ {1, . . . , p} and each j ∈ S(ti).

4 Constructing a Tractable Grid for Dynamic Programming
The density of the grid directly affects the performance of the DP method. A denser grid with many candidate breakpoints yields
lower error values, but this result is at the expense of significant degradation of runtime performance. Table 1 shows that lower
error values could be achieved by increasing the number of candidate breakpoints, although, at the expense of significant increases in
the runtime. For example, with a total of 10,000 candidate breakpoints, we could lower the error value by 1.9% compared with 500
candidate breakpoints. However, the runtime increased nearly 400-fold.

Table 1: Running time vs. lower error values for the UCI MPG dataset [5] with n = 398 and m = 5.
|Ω| Time (sec) Objective Value

500 0.056 6,830.611
1,000 0.201 6,812.490
5,000 4.981 6,718.609

10,000 19.917 6,697.479

If the grid has |S(ti)| = q for i = 1, . . . , p, then letting N = |Ω| = pq, the number of candidate breakpoints is O(N). If the
segment errors are precomputed, then the DP running time is bounded by O(N2m); for a detailed analysis see Appendix A. Hence,
it is essential to construct a grid that will be tractable in terms of running time satisfactory in terms of the quality of the solutions.

Bellman and Roth [3] do not consider a particular grid system. In the example introduced in [3], a uniform grid is assumed, as
depicted in Figure 1. For low-accuracy solutions a static uniform grid may be adequate. In order to improve on the accuracy, however,
a finer grid may be required, which may not be tractable using the uniform grid approach.

Figure 2 shows that there are many cases in which the range of useful y-coordinate values of candidate breakpoints can be
significantly narrowed down to lie within close proximity to the given data. Based on this observation we suggest two types of
techniques for constructing (nonuniform) grid systems. In Section 4.1, we describe a grid system which generates a fixed number of
candidate breakpoints near data points. In Section 4.2 we consider an adaptive construction of a grid. First we solve using a coarse
grid. Then, we generate additional candidate breakpoints that lie within a neighborhood of the current solution, and we iterate until
a termination condition is satisfied.
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Figure 2: Uniform grid vs. nonuniform grid. In the uniform grid, many of the candidate breakpoints do not
help much in approximating the given curve, depicted as a solid line. In the nonuniform grid, however, we
generate candidate breakpoints that are expected to improve the approximation of this curve.

4.1 DP-static: Placing a Fixed Number of Candidate Breakpoints near the Data Points
Here we propose a scheme for constructing a nonuniform grid of candidate breakpoints; we call this scheme DP-static. The input of
the DP-static scheme consists of the dataset D, an integer p, and an odd integer q.

DP-static generates p equally spaced x-coordinate values t1 < · · · < tp that subdivide the interval [mini xi,maxi xi] into (p− 1)

sub-intervals. The values t1, . . . , tp constitute the x-coordinate values of the candidate breakpoints.
For each ti we determine

k ∈ argmin
r=1,...,n

{|xr − ti| | xr ≤ ti } and ` ∈ argmin
r=1,...,n

{|xr − ti| | ti ≤ xr } .

Then, for i = 1, . . . , n we compute si1, . . . , siq . Since q is odd, it follows that
⌈ q
2

⌉
is the median index of si1, . . . , siq . For c =

maxi yi−mini yi
2n

and j = 1, . . . , q we let

sij = sid q2 e +
(
j −

⌈ q
2

⌉)
c.

Note that sid q2 e = yk+yl
2

. The resulting breakpoints are the
⋃
i=1,...,p{(ti, si1), . . . , (ti, siq)}. An example of the resulting grid is

depicted on the right of Figure 2.

4.2 DP-adaptive: Adaptive Refinement
The statically determined grid may not be adequate when the data points do not lie close enough to the optimal breakpoints. When
a region of data space requires a larger number of candidate breakpoints in order to obtain adequate solutions, it may be useful to
employ an iterative procedure based on the current solution. Also, through an adaptive refinement scheme it may be possible to attain
competitive error values by using a sparser grid and smaller number of candidate breakpoints.

Based on this intuition, we propose an adaptive refinement scheme. The algorithm is initialized with a coarse grid. At each
iteration, we apply the DP algorithm to the current grid and adaptively refine only those rectangles that intersect the DP solution
curve. Algorithm 1 describes our simple procedure for refining a subset of the rectangles, subdividing each into four subrectangles
by halving each one of its sides. Figure 3 shows an example that applies a few steps of the adaptive refinement algorithm. At the first
iteration we start with a large rectangle with four candidate breakpoints (denoted by circles) corresponding to the rectangle’s vertices.
After applying the DP, we refine the rectangles that intersect the line segments, by creating more candidate breakpoints at the center of
the rectangles as well as midpoints of each rectangle’s sides. The algorithm repeats the refinements step until a termination criterion
is met. Algorithm 2 implements the DP-adaptive scheme.

We use {[(tk, skl), (ti, sij)]} with tk < ti and skl < sij to denote a rectangle with bottom left point (tk, skl) and top right point
(ti, sij). Algorithm 2 is typically initialized with a rectangle set consisting of a single rectangle:

R←
{[

( min
i=1,...,n

xi, min
i=1,...,n

yi), ( max
i=1,...,n

xi, max
i=1,...,n

yi)

]}
. (8)

In the following for a finite C = {p1, p2, . . .} ⊆ R2 assume p11 ≤ p21 ≤ · · · ≤ p|C|1, and define

L(C) = {λpi + (1− λ)pi+1 | i = 1, . . . , |C| , 0 ≤ λ ≤ 1} ;

L(C) corresponds to the line segments that connect the points in C that are pairwise adjacent along the x-axis.
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Algorithm 1 refineGrid(R, R̂,Ω), refine a subset of rectangles of a given grid

Input: A set of rectangles R, current grid Ω, subset of rectangles R̂ to be refined
1: for each [(tk, skl), (ti, sij)] ∈ R̂ do
2: r1 ← [(tk, skl),

(
tk+ti

2 ,
skl+sij

2

)
], r2 ← [

(
tk,

skl+sij
2

)
,
(
tk+ti

2 , sij
)
]

3: r3 ← [
(

tk+ti
2 ,

skl+sij
2

)
, (ti, sij)], r4 ← [

(
tk+ti

2 , skl
)
,
(
ti,

skl+sij
2

)
].

4: R← R ∪ {r1, r2, r3, r4} \ {[(tk, skl), (ti, sij)]}
5: b1 ←

(
tk,

skl+sij
2

)
, b2 ←

(
tk+ti

2 , skl
)
, b3 ←

(
tk+ti

2 ,
skl+sij

2

)
, b4 ←

(
tk+ti

2 , sij
)

6: b5 ←
(
ti,

skl+sij
2

)
.

7: Ω← Ω ∪ {b1, b2, b3, b4, b5}.
8: end for

Output: R,Ω.

Figure 3: Adaptive refinement steps to find a continuous piecewise linear function with two line segments.
Unfilled circles denote newly added candidate breakpoints at each iteration. The graph of the piecewise
linear function in each step consists of the line segments connecting the circles. The curve minimizes the
error with respect to the current grid consisting of both filled and unfilled circles. For the sake of clarity, the
data points are not displayed in this diagram.

Algorithm 2 Adaptive refinement for a single curve (DP-adaptive)

Input: Dataset D ⊂ R2, the number of line segments m, iteration limit T ,
initial grid Ω ⊂ R2, and rectangle set R

1: for k = 1, . . . , T do
2: m′ ← min{m, k}
3: Evaluate (7) on Ω and let C ⊆ Ω denote the optimal solution.
4: R̂← {[(ti, sij), (tk, skj)] ∈ R | conv{(ti, sij), (ti, skj), (tk, sij), (tk, skj)} ∩ L(C) 6= ∅}
5: (R,Ω)← refineGrid(R, R̂,Ω)

6: end for
Output: C
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Figure 4: Least squares fit of two piecewise linear functions to a partition of the UCI MPG data [5] into
domestic and foreign made cars. Note that each breakpoint of the two piecewise linear functions share the
same x-coordinate value.

5 Extension of the Problem: Fitting Multiple Curves that Share a Break-
point Coordinate

The data points may be associated with one or more categories. For example, as in Figure 4 one may consider domestic vs. foreign
vehicles for estimating gas consumption. To each category we may choose to fit a distinct curve. However, the breakpoints’ horizontal
coordinates, also known as change-points or timestamps for time series data [7], may be required to be equal over all categories. For
example, with financial data the change-point may correspond to an event such as a market crash, and each category may correspond
to a different financial index.

In the following, we consider an extension of the dyanamic program and grid construction methods for multiple curves. To
simplify the presentation, we limit the current discussion to two curves, although Algorithm 3 describes the general method for v ≥ 2

curves. Let nw denote the number of data points in part w of the data, for w ∈ W
Def
= {1, . . . , v}, and so that

∑
w∈W nw = n.

Denote the corresponding data Dw = (xw yw) ∈ Rnw×2 for w ∈ W . As for the single curve case, a grid of candidate breakpoints is
constructed in order to apply the DP method. We generate distinct sets of candidate breakpoints, each of which is used to approximate
one of the curves. We follow the same procedure to generate the candidate breakpoints for each curve as described in Sections 4.1 and
4.2 except that the candidate breakpoints of each curve must share the same x-coordinate values.

5.1 Dynamic Programming for Multiple Curves
Now we write the Bellman optimality equations for the multiple-curve problem. For a curve w ∈ W and each pair of x-coordinate
values (tk, ti) with tk < ti, we have a v-tuples of line segments{

"w∈W (tk, s
w
k`, ti, s

w
ij) | ` ∈ Sw(tk), j ∈ Sw(ti)

}
;

for each index pair of x-coordinates (k, i) there are
∏
w∈W |Sw(tk)| × |Sw(ti)| line segments. For example, with v = 2 there are(

|S1(tk)| × |S1(ti)|
) (
|S2(tk)| × |S2(ti)|

)
possible combinations of line segments. For convenience, for a pair of indices (k, i) ∈

{1, . . . , p}×{1, . . . , p}with k 6= i, lw ∈ Sw(tk) and jw ∈ Sw(ti) for eachw ∈W , we write a v-tuple of segments as (tk, "w∈W swklw , ti, "w∈W swijw ).
The segment v-tuple error is then defined as

E(tk, "w∈W swklw ti, "w∈W swijw ) =
∑
w∈W

E(tk, s
w
klw

, ti, s
w
ijw

).
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For m̂ = 2, . . . ,m the optimality equations of the generalized multiple curve problem are

Fm̂ (i, j) = min
k=m̂,...,i−1,
lw∈Sw(tk):

w∈W

{
E(tk, "w∈W swilw , ti, "w∈W swijw ) + Fm̂−1 (k,"w∈W lw)

}
for i = m̂+ 1, . . . , p−m+ 1,

jw ∈ Sw(ti) : w ∈W. (9a)

F1 (i, j) = min
lw∈Sw(t1):w∈W

E(t1, "w∈W sw1lw , ti, "w∈W swijw ) for i = 2, . . . , p−m+ 1,

jw ∈ Sw(ti) : w ∈W. (9b)

If Sw(ti) ≤ q for w ∈ W and i = 1, . . . , p, then the running time of evaluating (9) is O(p2q2vm). The running time analysis and
proof are given in Appendix A.

5.2 Grid Construction for Multiple Curves
For DP-static we determine a single set of ti’s by subdividing the entire range of data (including both sets) into (q − 1) subintervals
of equal lengths. To generate a distinct set Sw(ti) for each i and each curve w, we apply a procedure similar to the one described in
Section 4.1 and using the same rectangle refinement subroutine given by Algorithm 1.

Algorithm 3 describes the extension of Algorithm 2 to the case of multiple curves. For the initial grid we typically use four

Algorithm 3 Adaptive refinement for multiple curves

Input: Datasets Dw ⊂ R2, for w ∈W , the number of line segments m, iteration limit T ,
initial grid Ωw, and rectangles Rw for w ∈W .

1: for k = 1, . . . , T do
2: m′ ← min{m, k}
3: Evaluate minj∈"w∈WSw(t

2k−1 ) Fm′(2
k−1, j) on Ω1, . . . ,Ωv and let C1 ⊆ Ω1, . . . , Cv ⊆ Ωv denote the

optimal solutions.
4: R̂w ← {[(ti, sij), (tk, skj)] ∈ Rw | conv{(ti, sij), (ti, skj), (tk, sij), (tk, skj)} ∩ L(Cw) 6= ∅} for w ∈W
5: refineGrid(Rw, R̂w,Ωw) for w = 1, . . . , v

6: end for
Output: Cw ∈ Ωw for w ∈W .

candidate breakpoints for each Ωw for w = 1, . . . , v. Accordingly, for w = 1, . . . , v, we initialize

Rw ←
{[

( min
w′=1,...,v

min
i=1,...,nw

xwi , min
i=1,...,nw

ywi ), ( max
w′=1,...,v

max
i=1,...,nw

xwi , max
i=1,...,nw

ywi )

]}
.

After the initialization, the algorithm follows the same procedure described in Algorithm 2 for refinement while maintaining the
distinct sets of candidate breakpoints for each curve. As the two curves are initialized with a single set of ti’s and the refinement
maintains a single set of ti’s for both curves thereafter, it follows that the breakpoints of the two solution curves will share the same
set of x-coordinate values.

Algorithm 3 implements the adaptive refinement procedure for multiple curves. In particular, with v = 2, we have an adaptive
refinement algorithm for two curves. The computational experiments of the current paper, discussed in Section 6, focus on the cases
of v = 1, 2.

6 Numerical Results
In this section we evaluate the performance of our proposed techniques. We experimented with six datasets including standard
benchmark UCI data [5] and hydrological data of water reservoirs in Colorado. Table 2 lists the datasets which we used: The first
three datasets are derived from the Auto MPG Dataset [5], with different columns as the independent variable. The fourth and fifth
datasets include hydrological data for estimating a reservoir’s volume based on water elevation measurements. The sixth dataset is a
hydrological time series.
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Table 2: Datasets used in the computational experiments.
Dataset n Description
(weight,MPG) 398 Vehicle weight as the independent variable used to explain MPG [5].
(horsepower, MPG) 392 Vehicle horsepower as the independent variable used to explain

MPG [5].
(displacement, MPG) 398 Vehicle engine displacement as the independent variable used to ex-

plain MPG [5].
(elevation, volume) 50 A subset of a dataset used to estimate the volume of the Morrow Point

reservoir as a function of the water elevation.
(elevation, volume) 834 A dataset used to estimate the volume of the Morrow Point reservoir as

a function of the water elevation.
(time, elevation) 1216 A dataset of water elevation measurements in the Blue Mesa reservoir

over 1216 time periods during the years 2008-2011.

The DP method and Algorithm 2 were implemented in C++. All experiments were run in serial using Intel Q8400 2.66 GHz CPUs
with a 2 MB cache size.

6.1 Comparison of the DP Solution Quality vs. MIP
We now compare the solution quality of the proposed DP variants with the solution of the MIP. In this section we limit our consider-
ation to a fixed setting of the parameters of DP-static and DP-adaptive and focus on comparing the solution quality with respect to
the optimal solution. The MIP formulations were solved using CPLEX 12.04. A time limit of one hour was applied to all runs. Table 3
compares the running times and solution values of DP with error loss function e2(·) with optimal solutions computed by (5). Here,
the initial rectangle of DP-adaptive is set to be three times the height of the default setting of (8) in order to allow for a larger range
of y-intercepts that seemed to be required with m = 1. The CPLEX relative optimality gap is set to 1%, and we set M1 = M3 = 1e5.
Table 4 compares the running times and solution values of DP with error loss function e1(·) using optimal solutions that are computed
by (5) with (5a) replaced by

∑n
i=1 ξi. Both tables indicate that in most cases the solution quality of the DP methods closely approxi-

mates the optimal solution. An exception is the DP-static method with m = 1. However, overall DP-adaptive shows an advantage,
albeit small, over DP-static in terms of the solution quality. Tables 3 and 4 also display the running times of the three methods. The
MIQP can only be solved up to m = 2. As shown in Table 4, the MILP can be solved with more breakpoints, but the table also shows
that the running times rapidly increase to exceed 50 minutes with 4 breakpoints.

Table 3: Computational results for (elevation,volume), n = 50, (#xGrid,#yGrid)=(100,5) for DP-static, and
T = 9 for DP-adaptive.

m
MIQP DP-Static DP-Adaptive

Time (sec) Objective Time (sec) Objective % Error Time (sec) Objective % Error
1 0.01 4,677.89 0.020 18,720.035 300.18 0.744 4,696.153 0.39
2 1.31 289.878 0.022 371.700 28.22 2.053 295.099 1.80
3 Time Limit 0.021 58.096 3.276 60.571

Table 4: Computational results for (elevation,volume), n = 50, (#xGrid,#yGrid)=(100,5) for DP-static, and
T = 9 for DP-adaptive.

m
MILP DP-Static DP-Adaptive

Time (sec) Objective Time (sec) Objective % Error Time (sec) Objective % Error
1 0.46 405.000 0.020 855.400 111.21 0.712 405.527 0.13
2 2.41 100.083 0.021 120.972 20.87 2.125 100.569 0.49
3 193.31 43.179 0.024 44.439 2.92 3.211 45.035 4.30
4 2934.81 18.997 0.025 26.874 41.46 6.263 25.981 36.76
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6.2 DP-static vs. DP-adaptive
We now discuss experiments with larger datasets and larger m values to compare our two schemes for constructing tractable grids of
candidate breakpoints. In our experiments we first ran DP-static and then DP-adaptive. DP-adaptive was run for sufficiently many
iterations so that its objective value (or error) matches that of DP-static. In Tables 5-10, the last column shows the number of iterations
of DP-adaptive that were needed to achieve the indicated results.

Tables 6-8 show that typically as m increases, the running time of DP-adaptive may increases in order to match and exceed the
quality of the DP-static solution. This is explained by the fact that DP-static allows the breakpoints to be located at or near the y-
coordinate of the actual data points. When m = n, this heuristic in fact yields the optimal solution with an optimal objective value
(i.e., error) of 0. When m is small the quality of this heuristic is poor; but as m is increased while n is held constant, the quality of
the heuristic typically improves. Table 6 shows a clear performance advantage of DP-adaptive over DP-static in terms of the running
times that are needed to exceed the error performance of the DP-static alternative. Table 7 shows that with a denser grid the quality
of DP-static’s solutions slightly improves but DP-adaptive easily exceeds the quality of DP-static’s solutions within a fraction of the
running time.

In Tables 9–10 it becomes apparent that as m ≥ 6 the running time required of DP-adaptive can significantly increase relative
to DP-static; as mentioned this is due to the improved performance of the DP-static heuristic for larger values of m relative to fixed
values of n. However, for a wide range of values of m, DP-adaptive remains faster than DP-static while providing a superior solution
quality. In Table 9 in cases in which the running time of DP-adaptive exceeds that of DP-static, the improvement in solution quality,
on the other hand, also tends to be significant (ranging from 8%-40%).

Figure 5 graphically displays the solutions of the linear spline regression experiments. The solutions of DP-static and DP-adaptive
seem to substantially differ for the noisier MPG datasets. For the less noisy water-elevation datasets it appears that the estimated
curves are quite close even when the estimated breakpoints do not coincide. Finally, Figure 6 displays an example of the grid that is
evaluated by DP-static compared with the grid that is evaluated by DP-adaptive. The figure shows that the DP-Adaptive algorithm
evaluates points that seem to be sparsely dispersed around the final solution curve but a little more densely distributed within a close
proximity to the curve. The DP-static grid on the other hand is very densely distributed around the datapoints (and final solution
curve).

Table 5: (weight,MPG) dataset, n = 398, (#xGrid,#yGrid)=(100,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω| Time (sec) Objective |Ω| T

2 0.055 7,031.140 500 0.010 7,019.904 138 5
3 0.055 6,980.827 500 0.012 6,970.296 150 5
4 0.056 6,915.180 500 0.014 6,783.982 165 5
5 0.057 6,830.611 500 0.014 6,783.670 165 5

Table 6: (horsepower,MPG) dataset, n = 392, (#xGrid,#yGrid)=(100,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω| Time (sec) Objective |Ω| T

2 0.054 14,129.924 500 0.0002 12,210.006 9 2
3 0.054 8,192.229 500 0.002 7,694.997 60 4
4 0.055 7,467.350 500 0.012 7,176.181 147 5
5 0.055 7,378.477 500 0.012 7,162.479 147 5

Table 7: (horsepower,MPG) dataset, n = 392, (#xGrid,#yGrid)=(200,20) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Obj Value |Ω| Time (sec) Obj Value |Ω| T

2 2.9391 12,250.488 4000 0.0002 12,210.006 9 2
3 2.9780 7,737.867 4000 0.002 7,694.997 60 4
4 3.0164 7,306.523 4000 0.012 7,176.181 147 5
5 3.0555 7,191.656 4000 0.012 7,162.479 147 5
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Table 8: (displacement,MPG) dataset, n = 398, (#xGrid,#yGrid)=(100,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω| Time (sec) Objective |Ω| T

2 0.050 8,811.040 500 0.002 7,808.003 54 4
3 0.051 7,328.727 500 0.050 7,092.556 328 6
4 0.055 6,817.053 500 0.073 6,811.856 406 6
5 0.058 6,741.545 500 0.346 6,593.420 855 7

Table 9: (elevation,storage) dataset, n = 834, (#xGrid,#yGrid)=(200,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω| Time (sec) Objective |Ω| T

2 0.352 71,814,118,000 1000 0.002 25,628,928,000 57 4
3 0.356 13,302,963,000 1000 0.016 5,620,973,400 153 5
4 0.358 3,630,796,100 1000 0.016 2,054,457,400 152 5
5 0.362 1,230,120,200 1000 0.082 664,427,240 393 6
6 0.363 546,859,270 1000 0.086 406,544,860 397 6
7 0.365 221,637,540 1000 0.101 221,608,790 431 6
8 0.369 100,619,500 1000 5.259 60,009,459 2960 8
9 0.373 47,851,391 1000 5.569 44,004,352 3046 8
10 0.376 24,115,875 1000 35.878 21,359,717 7370 9

Table 10: (time,elevation) dataset, n = 1216, (#xGrid,#yGrid)=(200,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω| Time (sec) Objective |Ω| T

2 0.473 541.8554 1000 0.003 285.8593 54 4
3 0.477 127.3319 1000 0.015 66.5020 137 5
4 0.485 28.4243 1000 0.073 17.4254 333 6
5 0.483 14.6801 1000 0.083 11.6842 352 6
6 0.489 9.7675 1000 0.083 8.368 352 6
7 0.491 5.0368 1000 3.387 4.587 2276 8
8 0.494 4.2606 1000 3.569 4.034 2312 8
9 0.497 3.7497 1000 4.250 3.551 2504 8

10 0.500 3.0380 1000 4.323 2.998 2515 8



12

0 50 100 150 200 250
Horse Power

5

10

15

20

25

30

35

40

45

50
M

PG
Dataset
DP-static
DP-adaptive

(a) (horsepower,MPG), m = 5, (#xGrid,#yGrid)=(200,5)
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(b) (horsepower,MPG), m = 5, (#xGrid,#yGrid)=(200,20)
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Figure 5: Graphical representation of numerical results of DP-static and DP-adaptive on several datasets.
Figure 5(b) show the results for the same dataset and setting as Figure 5(a) but with DP-static using a denser
static. Also, note that both methods result in similar solutions in Figure 5(e) where the approximating curve
is convex.
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Finally, Figure 6 shows the static grid next to the grid resulting from adaptive refinement.
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Figure 6: Comparison of the dense static grid and the adaptively refined grid for the (horsepower,MPG)
dataset.

6.3 DP-Static vs. DP-Adaptive with Two Curves
We now compare the performance of the static grid and adaptive refinement for the extended problem of determining two curves that
share breakpoints with identical horizontal coordinates. In Table 11, the column (|Ω1| , |Ω2|) indicates the total number of candidate
breakpoints generated for the first and second curves, respectively. The results of the table indicate that DP-adaptive is competitive
in terms of the running time required to obtain a given solution quality. The running time of DP-adaptive significantly increases,
however, for m = 5 with T = 6. The improved solution quality however is also significant in this case and Figure 7 displays the
different estimated curves associated with the DP-static and DP-adaptive solutions.

Table 11: Comparison of DP-static and the DP-adaptive Algorithm 3 with ν = 2 (two curves) using the
(weight,MPG) dataset. Here D1 consists of vehicles of origin type 2 (|D1| = 70), and D2 consists of vehicles
of origin type 3 (|D2| = 79). Also, (#xGrid,#yGrid)=(30,5) for DP-static.

m
DP-Static DP-Adaptive

Time (sec) Objective |Ω1| , |Ω2| Time (sec) Objective |Ω1| , |Ω2| T

2 0.039 4431.550 (150,150) 0.003 4363.912 (22,22) 3
3 0.040 4230.532 (150,150) 0.064 4071.355 (66,57) 4
4 0.041 4108.698 (150,150) 0.064 4043.569 (66,57) 4
5 0.042 4033.527 (150,150) 1.168 3864.417 (175,158) 5
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Figure 7: Graphical representation of numerical results of DP-static and DP-adaptive for the UCI MPG
dataset [5]. Here D1 contains the subset of vehicles with origin type 2, D2 contains the subset of vehicles
with origin type 3, and m = 5.

7 Conclusion
We have shown the efficacy of using nonuniform grids for dynamic programming in solving linear spline regression. In particular,
we devise an adaptive refinement scheme for solving linear spline regression with an arbitrary location of breakpoints. We compared
our methods with the optimal solutions computed using a novel MIP formulation of the problem. The advantage of the adaptive
refinement scheme is particularly apparent for (difficult) instances whose points are well approximated using m ≥ 2 line segments
where m remains small relative to n. When m is large relative to n, an alternative heuristic that determines a small set of candidate
breakpoints near the data points is competitive in terms of solution quality and speed.

Finally, we have extended the DP algorithm and our grid construction approach to fit multiple piecewise linear curves that share
the breakpoint horizontal coordinates (or change points). We also find the proposed adaptive refinement scheme useful in this setting.
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A Analysis of the Running Time of the Dynamic Program
Proposition 1. Suppose that for w ∈ W = {1, . . . , v}, and i = 1, . . . , p we have Sw(ti) ≤ q. Then, if we assume E(·) is given, the running
time of the DP (9) is O(p2q2vm).

Proof. The DP requires the evaluation of Fm̂(i, j) for m̂ = 1, . . . ,m, i = 1, . . . , p, and j ∈ S(ti).
First, F1(i, j) is evaluated for i = 2, . . . , p −m + 1 and j ∈ "w∈WSw(ti) and each such evaluation is O(1) assuming that E is

given. For each i ∈ {1, . . . , p − (m − 1)}, |Sw(ti)| ≤ q for each w ∈ W , so that q2v operations are used to enumerate elements of
Sw(t1) × Sw(ti) in order to determine F1(i, j) = minlw∈Sw(t1):w∈W E(t1, "w∈W sw1lw , ti,"w∈W swijw ), for j ∈ "w∈WSw(ti) and
w ∈W . Hence, in total at most (p−m)q2v evaluations are required to determine F1(i, j) for i = 1, . . . , p−m+1 and j ∈ "w∈WSw(i).

Next, for m̂ ∈ {2, . . . ,m}, Fm̂(i, j) is evaluated for i ∈ I Def
= {m̂+1, . . . , p−m+m̂} and j ∈ "w∈WSw(i). Note that |I| = p−m.

For a given i ∈ I and j ∈ S(ti), Fm̂(i, j) evaluates Fm̂−1(k, ·) for k ∈ {m̂ + 1, . . . , i − 1}. For each pair (k, i) ∈ I × I with k 6= i,
and w ∈ W , at most q2 evaluations are required. Then, the number of segment combinations over w ∈ W is q2|W | = q2v . There
are at most

((p−m)
2

)
such pairs (where k 6= i), so that at most (p−m)(p−m−1)

2
q2v evaluations are required to compute Fm̂(i, j) for

i = m̂, . . . , p−m+ m̂ and j ∈ "w∈WSw(ti).
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Hence, the number of operations is bounded by

(p−m)q2v + (m− 1)
(p−m)(p−m− 1)

2
q2v = (p−m)q2

(
(m+ 1) + (m− 1)(p−m)

2

)
∈ O((p−m)2q2vm) ⊆ O(p2q2vm).

If v = 1 then the total running time may be dominated by the computation of the segment errors E(·). If N is the total number
of breakpoints then note that the running time of computing the segment errors is bounded by O(N2n). As (9) with v = 1 reduces
to (6), the following corollary establishes the running time of evaluating (6) following the precomputation of E(·).

Corollary 1. Suppose that for i = 1, . . . , p we have Sw(ti) ≤ q and let N = pq. Then, if we assume E(·) is given, the running time of the
DP (6) is O(N2m).
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